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Abstract. Data loading has traditionally been considered a “one-time deal” –
an offline process out of the critical path of query execution. The architecture of
DBMS is aligned with this assumption. Nevertheless, the rate in which data is
produced and gathered nowadays has nullified the “one-off” assumption, and has
turned data loading into a major bottleneck of the data analysis pipeline.
This paper analyzes the behavior of modern DBMS in order to quantify their
ability to fully exploit multicore processors and modern storage hardware during
data loading. We examine multiple state-of-the-art DBMS, a variety of hardware
configurations, and a combination of synthetic and real-world datasets to iden-
tify bottlenecks in the data loading process and to provide guidelines on how
to accelerate data loading. Our findings show that modern DBMS are unable to
saturate the available hardware resources. We therefore identify opportunities to
accelerate data loading.

1 Introduction

Applications both from the scientific and business worlds accumulate data at an increas-
ingly rapid pace. Natural science experiments produce unprecedented amounts of data.
Similarly, companies aggressively collect data to optimize business strategy. The recent
advances in cost-effective storage hardware enable storing the produced data, but the
ability to organize and process this data has been unable to keep pace with data growth.

Extracting value out of gathered data has traditionally required loading it into an op-
erational database. For example, in data warehouse scenarios, ETL involves Extracting
data from outside sources, Transforming it to fit operational needs, and then Loading
it into the target database [16, 23]. The demand for reduced data-to-query time requires
data loading to be a fast operation [27]. The demand for high availability requires mini-
mizing, if not eliminating, batch loading windows during which Database Management
Systems (DBMS) can be taken offline. Finally, the ever-increasing growth of data re-
quires data loading to be a scalable operation that can exploit hardware parallelism to
load massive amounts of data in very short amounts of time [16, 23]. Unfortunately, tra-
ditional DBMS are built around the assumption that data loading is a “one-time deal”;
? Work done while the author was at EPFL.



data loading is considered an offline process out of the critical path, with the user defin-
ing a schema and loading the majority of the data in one go before submitting any
queries. When this architectural design assumption is combined with the explosive data
growth, the result is the emergence of data loading as a major bottleneck in the data
analysis pipeline of state-of-the-art DBMS.

While much research over the past few years has focused on innovative techniques
to avoid or accelerate data loading [8, 13, 21, 24], there has been no systematic study
till date that quantifies the ability of modern DBMS to exploit multicore processors and
modern storage hardware in order to parallelize data loading. The importance of such
quantification has been recognized by the Big Data community, and has led the “Big-
Data Top100” benchmark to consider the time spent to load data into the system as part
of the benchmark metric [11]. Still, although there is a wide variety of benchmarks [5–
7] which use diverse queries to evaluate the query processing capabilities of DBMS, a
similar analysis of the (bulk) data loading capabilities of DBMS is missing.

This paper presents a detailed data loading analysis with the following goals: 1) an-
alyze how parallel data loading scales for various DBMS, 2) identify bottlenecks, and
3) provide development guidelines to enable the design of efficient data loading pipelines,
and administration guidelines to accelerate the time-consuming loading process. The
analysis considers three dimensions: software, hardware, and application workloads.
Along the software dimension, we investigate architectural aspects (row stores vs col-
umn stores) of four state-of-the-art DBMS, implementation aspects (the threading model
used for parallel loading), and runtime aspects (degree of parallelism, presence and ab-
sence of logging/constraints). Along the hardware dimension, we evaluate the impact
of storage configurations with different I/O capabilities (HDD, SATA SSD, hardware
RAID controller with SCSI disks, and DRAM). Finally, along the workload dimension,
we consider data from popular benchmarks and real-world datasets with diverse data
types, field cardinality, and number of columns. The results of the analysis show that:

– Bulk loading performance is directly connected to the characteristics of the dataset
to be loaded: Each evaluated DBMS is stressed differently by the involved datatypes,
the number of columns, the underlying storage, etc.

– Both single-threaded and parallel bulk loading leave CPU and/or storage underuti-
lized. Improving CPU utilization requires optimizing the input I/O path to reduce
random I/O and the output I/O path to reduce pauses caused by data flushes. Such
optimizations bring a 2-10x loading time reduction for all tested DBMS.

– Despite data loading being 100% CPU bound in the absence of any I/O overhead,
the speedup achieved by increasing DoP is sub-linear. Parsing, tokenizing, datatype
conversion, and tuple construction dominate CPU utilization and need to be opti-
mized further to achieve further reduction in loading time.

– In the presence of constraints, different DBMS exhibit varying degrees of scala-
bility. We also list cases in which the conventional drop indexes-load data-rebuild
indexes rule-of-thumb which is applicable to single-threaded index building and
constraint verification is inappropriate under parallel loading.

– Under high DoP, constraints can create unwarranted latch contention in the logging
and locking subsystems of a DBMS. Such overheads are a side-effect of reusing the
traditional query execution code base for bulk data loading and can be eliminated
by making data loading a first-class citizen in DBMS design.



Name Capacity Configuration Read Speed Write Speed RPM

HDD 1.8 TB 4 x HDD (RAID-0) 170 MB/sec 160 MB/sec 7.5k
DAS 13 TB 24 x HDD (RAID-0) 1100 MB/sec 330 MB/sec 7.5k
SSD 550 GB 3 x SSD (RAID-0) 565 MB/sec 268 MB/sec n/a

Table 1: Storage devices and characteristics.

2 Setup and Methodology
We now describe the experimental setup, the workloads employed to study and analyze
the behavior of the different DBMS during data loading, and the applied methodology.

2.1 Experimental Setup
Hardware: The experiments are conducted using a Dell PowerEdge R720 server equipped
with a dual socket Intel(R) Xeon(R) CPU E5-2640 (8 cores, 2 threads per core resulting
in 32 hardware contexts) clocked at 2.00 GHz, 64KB L1 cache per core, 256KB L2
cache per core, 20MB L3 cache shared, and 64GB RAM (1600 MHz DIMMs).

The server is equipped with different data storage devices, including i) individual
SATA hard disk drives (HDD), ii) a hardware RAID-0 array with SAS HDD (DAS), and
iii) a hardware RAID-0 array with SAS solid state drives (SSD). Table 1 summarizes
the available storage devices and their characteristics.
OS: We run all the experiments using Red Hat Enterprise Linux 6.6 (Santiago - 64bit)
with kernel version 2.6.32.
Analyzed Systems: The analysis studies four systems: a commercial row-store (DBMS-
A), an open-source row-store (PostgreSQL [2]), a commercial column-store (DBMS-
B), and an open-source column-store (MonetDB [1]). To preserve anonymity due to
legal restrictions, the names of the commercial database systems are not disclosed.
PostgreSQL (version 9.3.2) and MonetDB (version 11.19.9) are built using gcc 4.4.7
with -O2 and -O3 optimizations enabled respectively.

2.2 Datasets
The experiments include datasets with different characteristics: both industry-standard
and scientific datasets, as well as custom micro-benchmarks. All datasets are stored in
textual, comma-separated values (CSV) files.

Industrial benchmarks. We use the TPC-H decision support benchmark [7], which
is designed for evaluating data warehouses, and the transaction processing benchmark
TPC-C [5], which models an online transaction processing database.

Scientific datasets. To examine more complex and diverse cases compared to the
synthetic benchmarks, we also include in the experiments a subset of the SDSS [3]
dataset and a real-life dataset provided by Symantec [4].

SDSS contains data collected by telescopes that scan parts of the sky; it includes
detailed images and spectra of sky objects along with properties about stars and galax-
ies. SDSS is a challenging dataset because i) it includes many floating point numbers
that require precision and ii) most of its tables contain more than 300 attributes.

The Symantec spam dataset consists of a collection of spam e-mails collected through
the worldwide-distributed spam traps of Symantec. Each tuple contains a set of features
describing characteristics of the spam e-mails, such as the e-mail subject and body, the



language, the sender’s IP address, the country from which the spam e-mail was sent, and
attachments sent with the e-mail. NULL values are common in the Symantec dataset be-
cause each e-mail entry may contain different types of features. In addition, the width
of each tuple varies based on the collected features (from a few bytes to a few KB).
The Symantec spam dataset also contains wide variable length attributes (e.g., e-mail
subject) that considerably stress systems which use compression for strings.

2.3 Experimental Methodology
The goal of the experiments is to provide insight on “where time goes” during loading
in modern DBMS – not to declare a specific DBMS as the fastest option in terms of
bulk loading performance. The experiments thus explore a number of different config-
urations (software and hardware) and datasets, and highlight how different parameters
and setups affect loading performance.

All DBMS we use in this analysis support loading data either by using a bulk load-
ing COPY command or by using a series of INSERT statements. We found bulk loading
using COPY to be much faster than using INSERT statements for all DBMS. Therefore, all
experimental results reported in this paper were obtained by using the COPY command.

In addition to bulk loading, DBMS-A, MonetDB, and DBMS-B also offer built-in
support for parallel loading. PostgreSQL, in constrast, does not support parallel load-
ing. We work around this limitation by building an external parallel loader which we
describe in Section 3.

Tuning. All tested systems are tuned following guidelines proposed by the DBMS
vendors to speed up loading. For MonetDB, we also provide the number of tuples in the
dataset as a hint to the parallel loader as we found that loading does not scale without
providing this hint. To ensure fair comparison between the systems, we map datatypes
used in benchmarks to DBMS-specific datatypes such that the resulting datatype size
remains the same across all DBMS. Thus, the difference in loaded database size across
DBMS is due to architectural differences, like the use of data compression.

Profiling. We collect statistics about CPU, RAM, and disk I/O utilization of the OS
and the DBMS. We use sar to measure the CPU and RAM utilization, and iostat
to measure disk utilization statistics. In addition, we use iosnoop to record disk ac-
cess patterns and the Intel VTune Amplifier to profile the different systems and derive
performance breakdown graphs.

3 Experimental Evaluation
We conduct several experiments to evaluate the bulk loading performance of the tested
systems. We start with a baseline comparison of single-threaded data loading using a
variety of datasets. We then consider how data loading scales as we increase the degree
of parallelism. Following this, we analyze I/O and CPU utilization characteristics of
each DBMS to identify where time is spent during data loading and investigate the
effect of scaling the storage subsystem. Finally, we examine how each system handles
the challenge of enforcing constraints during data loading.

3.1 Baseline: Single-threaded data loading
This experiment investigates the behavior of PostgreSQL, MonetDB, DBMS-A and
DBMS-B as their inputs increase progressively from 1GB to 100GB. Each variation of
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Fig. 1: Data loading time increases linearly with the dataset size (single-threaded load-
ing, raw input from HDD, database on DAS).

the experiment uses as input (a) TPC-H, (b) TPC-C, (c) SDSS, or (iv) Symantec dataset.
The experiment emulates a typical enterprise scenario where the database is stored on
a high-performance RAID array and the input data to be loaded into the database is
accessed over a slow medium. We thus read the input from HDD, a slow data source,
and store the database on DAS, a high-performance RAID array.

Figure 1(a-d) plots the data loading time for each system under the four benchmarks.
As can be seen, the data loading time increases linearly with the dataset size (except
when we load the SDSS dataset in DBMS-A and the Symantec dataset in DBMS-
B). DBMS-A outperforms the rest of the systems in the majority of the cases; when
considering 100GB database instances, DBMS-A is 1.5⇥ faster for TPC-H, 2.3⇥ faster
for TPC-C, and 1.91⇥ faster for Symantec compared to the second fastest system in
each case. DBMS-A, however, shows the worst performance for the SDSS dataset (5⇥
slower than the fastest system). The reason is that SDSS contains numerous floating-
point fields, which are meant to be used in scientific processing. DBMS-A offers a
compact datatype for such use cases, which facilitates computations at query time but
is expensive to instantiate at loading time, thus stressing the storage engine of DBMS-A.
Among the other systems, PostgreSQL exhibits robust performance, having the second
fastest loading time in most experiments.

PostgreSQL and DBMS-A outperform DBMS-B and MonetDB under the Syman-
tec dataset because of the architectural differences between the two types of DBMS.
PostgreSQL and DBMS-A are row stores that follow the N-ary storage model (NSM)
in which data is organized as tuples (rows) and is stored sequentially in slotted pages.
OLTP applications benefit from NSM storage because it is more straightforward to up-



Name TPC-H TPC-C SDSS Symantec

DBMS-A 1.5 1.3 1.5 1.5
PostgreSQL 1.4 1.4 1.4 1.1

DBMS-B 0.27 0.82 0.18 0.25
MonetDB 1.1 1.4 1.0 0.92

Table 2: Input data file/Database size ratio for each dataset (10GB instance). Column
stores achieve a better ratio (less is better).

date multiple fields of a tuple when they are stored sequentially. Likewise, compression
is used less frequently because it makes data updates more expensive. On the other
hand, DBMS-B and MonetDB are column stores that follow the decomposition storage
model (DSM) and organize data in standalone columns; since they typically serve scan-
intensive OLAP workloads, they apply compression to reduce the cost of data scans.

Table 2 shows the ratio between the input data file and the final database size for
the experiments of Figure 1. Even though the tested systems read the same amount
of data, they end up writing notably different amounts of data. Clearly, DBMS-B and
MonetDB have smaller storage footprint than PostgreSQL and DBMS-A. The row-
stores require more space because they store auxiliary information in each tuple (e.g., a
header) and do not use compression. This directly translates to improved performance
during query execution for column stores due to fewer I/O requests.

The downside of compression, however, is the increase in data loading time due
to the added processing required for compressing data. DBMS-B compresses all input
data during loading. Thus, it has the worst overall loading time in almost all cases. Mon-
etDB only compresses string values. Therefore, the compression cost is less noticeable
for MonetDB than it is for DBMS-B. The string-heavy Symantec dataset stresses Mon-
etDB, which compresses strings using dictionary encoding. This is why MonetDB ex-
hibits the second worst loading time under Symantec. Despite this, its loading time is
much lower than DBMS-B. The reason is that MonetDB creates a local dictionary for
each data block it initializes, and flushes it along with the data block. Therefore, the
local dictionaries have manageable sizes and reasonable maintenance cost. We believe
that DBMS-B, in contrast, chooses an expensive, global compression scheme that in-
curs a significant penalty for compressing the high-cardinality, wide attributes in the
Symantec dataset (e.g., e-mail body, domain name, etc.).

Summary The time taken to load data into a DBMS depends on both the dataset being
loaded and the architecture used by the DBMS. No single system is a clear winner in
all scenarios. A common pattern across all experiments in the single-threaded case is
that the evaluated systems are unable to saturate the 170 MB/sec I/O bandwidth of the
HDD – the slowest input device used in this study. The next section examines whether
data parallelism accelerates data loading.

3.2 Parallel data loading
The following experiments examine how much benefit a DBMS achieves by perform-
ing data loading in a parallel fashion. As mentioned earlier, PostgreSQL lacks support
for parallel bulk loading out-of-the-box. We thus develop an external loader that in-
vokes multiple PostgreSQL COPY commands in parallel. To differentiate our external
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Fig. 2: Data loading time increases linearly with the dataset size (parallel loading, input
on HDD, database on DAS).

loader from native PostgreSQL, we will refer to it as PCOPY. PCOPY differs from other
systems that support parallel loading as native feature in that it uses PostgreSQL as
a testbed to show how parallelism can be introduced to an existing RDBMS without
tweaking its internal components. PCOPY is a multithreaded application that takes as
input the file to be loaded into the database, memory maps it, computes aligned logical
partitions, and assigns each partition to a different thread. Each thread sets up a pipe
and forks off a PostgreSQL client process that runs the COPY command configured to
read from a redirected standard input. Then the thread loads the data belonging to its
partition by writing out the memory mapped input file to the client process via the pipe.

Figure 2(a-d) plots the results for each dataset. We configure all systems to use 16
threads – the number of physical cores of the server. Comparing Figures 1 and 2, we can
see that parallel loading improves performance compared to single-threaded loading in
the majority of cases. Similar to the single-threaded case, loading time increases almost
linearly as the dataset size increases. DBMS-B shows the same behavior as in the single-
threaded case for the Symantec dataset. On the other hand, parallel loading significantly
improves the loading time of DBMS-A for SDSS; abundant parallelism masks the high
conversion cost of floating-point values intended to be used in scientific computations.

The data loading code path of PostgreSQL proves to be more parallelizable for this
experiment as PCOPY achieves the lowest loading time across the different datasets.
Compared to single-threaded PostgreSQL, PCOPY is 2.77⇥ faster for TPC-H, 2.71⇥
faster for TPC-C, 3.13⇥ faster for SDSS, and 1.9⇥ faster for Symantec (consider-
ing the 100GB instances of the datasets). MonetDB benefits from parallel loading as
well, being 1.72⇥ faster for TPC-H, 1.49⇥ faster for TPC-C, 3.07⇥ faster for SDSS,



and 2.16⇥ faster for Symantec (100GB instances). The parallel version of DBMS-A is
1.25⇥ faster for TPC-H and 10.78⇥ faster for SDSS compared to the single-threaded
version (100GB instances). On the other hand, DBMS-A fails to achieve a speed-up for
TPC-C and Symantec. Finally, DBMS-B is 2.84⇥ faster for TPC-H, 1.34⇥ faster for
TPC-C, and 2.28⇥ faster for SDSS (100GB instances) compared to its single-threaded
variation. Similar to the single-threaded case, DBMS-B requires significantly more time
to load the long string values of the Symantec dataset. As a result, DBMS-B still pro-
cesses the 10GB dataset when the other systems have already finished loading 100GB.

Summary. Figure 2 again shows that there is no system that outperforms the others
across all the tested datasets. Generally, parallel loading improves data loading perfor-
mance in comparison to single-threaded loading in many cases. However, scaling is far
from ideal, as loading time does not reduce commensurately with the number of cores
used. In fact, there are cases where a 16⇥ increase in the degree of parallelism fails to
bring any improvement at all (e.g., DBMS-A for TPC-C and Symantec).

3.3 Data Loading: Where does time go?
The next experiment looks into CPU and I/O resource usage patterns to identify where
time goes during the data loading process so that we understand the reason behind lack
of scalability under parallel data loading. This experiment presents an alternative view
of Figure 2(a): It monitors the usage of system resources (CPU, RAM, I/O reads and
writes) when a 10GB version of TPC-H is loaded using the parallel loaders for various
DBMS. As before, raw data is initially stored on HDD and the database is stored on
DAS. There are two patterns that can be observed across all systems in Figure 3:

First, both CPU utilization and write I/O bandwidth utilization exhibit alternating
peak and plateau cycles. This can be explained by breaking down the data loading
process into a sequence of steps which all systems follow. During data loading, blocks
of raw data are read sequentially from the input files until all data has been read. Each
block is parsed to identify the tuples that it contains. Each tuple is tokenized to extract
its attributes. Then, every attribute is converted to a binary representation. This process
of parsing, tokenization, and deserialization causes peaks in the CPU utilization. Once
the database-internal representation of a tuple is created, the tuple becomes part of a
batch of tuples that are written by the DBMS and buffered by the OS. Periodically,
these writes are flushed out to the disk. This caching mechanism is responsible for the
peaks in write I/O utilization. During these peaks, the CPU utilization in all systems
except PCOPY drops dramatically. This is due to the buffer cache in DBMS blocking
on a write operation that triggers a flush, thereby stalling the loading process until the
flush, and hence the issued I/O operation, complete.

The second pattern that can be observed across all systems is that CPU and I/O
resources remain under-utilized. MonetDB exhibits the lowest CPU utilization among
all systems. This is due to the fact that it uses one “producer” thread that reads, parses,
and tokenizes raw data values, and then N “consumer” threads convert the raw values
to a binary format. The parsing and tokenization steps, however, are CPU-intensive and
cause a bottleneck on the single producer; CPU utilization is therefore low for Mon-
etDB. The CPU usage for DBMS-B has bursts that are seemingly connected with the
system’s effort to compress input values, but is otherwise very low. DBMS-B spawns
a very high number of threads with low scheduling priority; they get easily pre-empted
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due to their low priority and they fail to saturate the CPU. PCOPY and DBMS-A have
higher CPU usage (61% and 47% on average, respectively) compared to MonetDB and
DBMS-B, yet they also fail to fully exploit the CPU resources.

Figure 4 illustrates the percentage of time that each DBMS spends waiting for I/O
requests to be resolved during each second of execution. Except MonetDB, all other
systems spend a non-trivial portion of time waiting for I/O which explains the low
CPU utilization. Still, read throughput utilization of various systems in Figure 3 barely
exceeds 60% even in the best case. This clearly indicates that all systems except Mon-
etDB issue random read I/O requests during parallel data loading which causes high I/O
delays and an underutilization of CPU resources.

Summary. Contrary to single-threaded loading, which is CPU bound, parallel data
loading is I/O bound. Except MonetDB, parallel data loaders used by all systems suf-
fer from poor CPU utilization due to being bottlenecked on random I/O in the input
data path. MonetDB, in contrast, suffers from poor CPU utilization due to being bottle-
necked on the single producer thread that parses and tokenizes data.

3.4 Impact of underlying storage

The previous experiments showed that a typical DBMS setup under-utilizes both I/O
bandwidth as well as the available CPUs because of the time it spends waiting for ran-
dom I/O completion. This section studies the underutilization issue from both a soft-
ware and a hardware perspective; it investigates i) how the different read patterns of
each tested DBMS affect read throughput, and i) how different storage sub-systems
affect data loading speed.

I/O read patterns. This set of experiments uses as input an instance of the orders
table from the TPC-H benchmark with size 1.7GB and records the input I/O pattern of
different systems during data loading. We extract the block addresses of the input file
and the database file using hdparm, and we use iosnoop to identify threads/processes
that read from/write to a disk. The input data file is logically divided on disk into 14
pieces (13 with size 128 MB and a smaller one with size 8MB). To generate each
graph, we take i) the start and end times of the disk requests, ii) the address of the
disk from where the reading for the request starts and iii) the size of the operation in
bytes. Then, we draw a line from the point specified by (start time, start address) to
the (end time, start address + # of read bytes). There are two kinds of plots: The first
one depicts the whole file address space, while the other zooms in the first contiguous
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LBAs (Logical Block Addresses), further on called chunk. Different colors in the graphs
represent distinct processes/threads.
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Figures 5, 6, 7, and 8 plot the read patterns for PCOPY ,MonetDB, DBMS-A, and
DBMS-B respectively. All systems operate in parallel mode. MonetDB reads data from
disk sequentially using one thread, while the other systems use multiple concurrent
readers (plotted with different colors in the graphs). Figure 6(a) depicts the 13 pieces
read serially which mirror the 13 main contiguous address spaces of the input file. By
looking closer into Figure 6(b) we observe that MonetDB reads big contiguous chunks.
In total, the plots depict four different read patterns:

– PCOPY exploits 16 threads to read different parts of the file simultaneously. Then,
each thread reads consecutive blocks of the assigned part of the file (Figure 5(b)).

– MonetDB uses a single “producer” thread to read data and provide each data block
to a “consumer” (Figure 6).

– DBMS-A accesses a part of the file and processes it using multiple threads. Each
thread is assigned its own contiguous area within the accessed chunk (Figure 7(b)).

– DBMS-B first samples the whole file with one process, and then it accesses a big
chunk of the file (roughly 1GB) in one go. Similar to DBMS-A, each thread is as-
signed a contiguous portion of a chunk. Contrary to DBMS-A, which reads one part
of the file at a time (1 out of the 13 chunks), DBMS-B accesses a wider address space
in the same period of time (8 out of the 13 chunks). However, they behave alike on
the lower level where each thread reads a contiguous sequence of blocks.

Analyzing each system further reveals that MonetDB uses a sequential read pat-
tern, whereas the rest of the systems use parallel readers that read small data chunks
from different seeks to the disk and cause random I/O. To gauge which of the two ap-
proaches is more beneficial for a system, we implement PCOPY++, which is a variation
of PCOPY that uses a single serial reader. As depicted in Figure 9, PCOPY++ achieves
higher read throughput because it uses a serial data access pattern, which minimizes the
costly disk seeks and is also disk-prefetcher-friendly. As a result, PCOPY++ reduced
loading time by an additional 5% in our experiments.

Effect of different storage devices. While sequential accesses are certainly useful for
slow HDD-based data sources, it might be beneficial to use multiple readers on data
sources that can sustain large random IOPS, like SSD. Thus, another way to eliminate
the random I/O bottleneck is to use faster input and output storage media.

To examine the impact of the underlying data storage on parallel loading, we run an
experiment where we use as input a 10GB instance of TPC-H and vary the data source
and destination storage devices. Figure 10 plots the loading time when the slow HDD is
the data source storage media, as in previous experiments, while varying the destination
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storage used for storing the database. Varying the database storage has little to no impact
on most systems despite the fact that ramfs is an order of magnitude faster than DAS.
This again shows that all systems are bottlenecked on the source media. The random
I/O requests that the DBMS trigger when loading data in parallel force the HDD to
perform many seeks, and therefore the HDD is unable to serve data fast enough.

For MonetDB, the loading time increases when the database resides on ramfs. To
clarify this trend, we analyze the performance of MonetDB using VTune. We notice
that most of the CPU time is spent in the internal f allocate function. MonetDB by
default uses the posix f allocate function, which instructs the kernel to reserve a space
on disk for writes. ramfs, however, lacks support for the posix f allocate function and
as a result the glibc library has to re-create its semantics – a factor that slows down the
loading process4.

Figure 11 plots the loading time when we vary the data source storage while using
DAS as the data destination storage. Using a faster data source storage accelerates load-
ing for all the systems. Nevertheless, the difference between the configurations that use
SSD- and ramfs-based source storage is marginal, which implies that the write perfor-
mance of DAS eventually becomes a bottleneck for very fast input devices.

To further look into the write bottleneck, Figure 12 plots the loading time when
we vary the data destination storage while using ramfs – the fastest option – as the
data source storage. The observed behavior varies across systems: DBMS-B has little
benefit from ramfs because of its thread overprovisioning; the numerous low-priority
threads it spawns get pre-empted often. For PCOPY and DBMS-A, using ramfs as the

4 We reported this behavior to the MonetDB developers, and it is fixed in the current release.
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data destination storage achieves the best overall performance. Loading time reduces
by 1.75⇥ for DBMS-A and 1.4⇥ for PCOPY when ramfs is used as the destination
storage compared to DAS. This clearly shows that DAS, despite being equipped with a
battery-backed cache for buffering writes, is still a bottleneck to data loading due to the
negative impact that dirty data flushing has on the data loading pipeline.

Figure 13 shows the CPU utilization for the DBMS that support parallel loading
when source and destination are ramfs. Only DBMS-A reaches 100% CPU utilization,
with its performance eventually becoming bound by the CPU-intensive data parsing and
conversion tasks.

Summary. The experiments demonstrate the effect of the interaction between the
DBMS and the underlying storage subsystem, both from a software and a hardware
perspective. Our analysis showed that the way in which DBMS issue read requests and
the degree of parallelism they employ has an effect on the read throughput achieved.

Writes are also challenging for parallel loading because multiple writers might in-
crease I/O contention due to concurrent writes. In fact, slow writes can have a bigger
impact on the data loading performance than slow reads, as slow flushing of dirty data
stall the data loading pipeline. Thus, it is important to use storage media that perform
bulk writes quickly (using write caches or otherwise) to limit the impact of this problem.

Finally, for the fastest combinations of data source and destination storage, which
also allow a high degree of IOPS, there are DBMS that become CPU-bound. However,
on measuring the storage bandwidth they use in that case (250MB/s), we found that they
will still be unable to fully utilize modern storage devices, like PCIe SSD, indicating
that the data loading code path needs to be optimized further to reduce loading time.

3.5 Hitting the CPU wall

Data loading is a CPU-intensive task – a fact that becomes apparent after using the
fastest data source and destination storage combination. This section presents a CPU
breakdown analysis using VTune for the two open-source systems (PostgreSQL and
MonetDB). For this experiment, we use as input a custom dataset of 10GB which con-
tains 10 columns with integer values and we examine the CPU overhead of loading this
data file. Figure 14 shows the results; we group together the tasks corresponding to the
same functionality for both systems based on the high-level steps described above.



Even though PostgreSQL is a row-store and MonetDB is a column-store, both
databases go through similar steps to perform data loading. Both systems spend the ma-
jority of their processing time to perform the parsing, tokenizing, and data type conver-
sion steps (69% for PostgreSQL and 91% for MonetDB). Overall, data loading is CPU-
intensive; however, parsing and tokenizing data from a file and generating tuples can be
decomposed into tasks of smaller size. These tasks do not require any communication
(i.e., there are no dependencies between them), thus they are ideal candidates for paral-
lel execution. Modern DBMS are based on this property to provide parallel loading. The
CPU cost for parsing and tokenizing can also be further reduced if the general-purpose
file readers used by the DBMS for bulk loading are replaced by custom, file-specific
readers that exploit information regarding the database schema [21] (e.g., number of
attributes per tuple, datatype of each attribute). Finally, PostgreSQL spends 8% of the
time creating tuples and 9% of the time for logging related tasks. On the other hand,
MonetDB spends 5% of the loading time on the same steps.

3.6 Data loading in the presence of constraints
Enforcing integrity constraints adds overheads to the data loading process. An estab-
lished rule of thumb claims that populating the database and verifying constraints should
be separated and run as two independent phases. Following this adage, database ad-
ministrators typically drop all preexisting primary and foreign key constraints, load
data, and add constraints back again to minimize the total data loading time. This sec-
tion investigates the performance and scalability implications of primary-key (PK) and
foreign-key (FK) constraint verification, and tests conventional knowledge.

Primary key constraints. Figure 15 shows the total time taken to load the TPC-H SF-
10 dataset in the single-threaded case when a) no constraints are enabled, b) primary
key constraints are added before loading the data (“Unified” loading and verification),
c) primary key constraints are added after loading the data (“Post”-verification). All
the experiments use an HDD as the input source and DAS to store the database. We
omit results for DBMS-B because it lacks support for constraint verification, and for
MonetDB because its Unified variation enforces a subset of the constraints that this
section benchmarks5. We consider PK constraints as specified in the TPC-H schema.

Figure 15 shows that for both DBMS-A and PostgreSQL, enabling constraints be-
fore loading data is 1.16⇥ to 1.82⇥ slower than adding constraints after loading. The
traditional rule of thumb therefore holds for single-threaded data loading. A natural
question that arises is whether parallel loading techniques challenge this rule of thumb.

DBMS-A supports explicit parallelization of both data loading and constraint ver-
ification phases. Thus, DBMS-A can parallelize the Unified approach by loading data
in parallel into a database which has PK constraints enabled, and parallelize the Post
approach by performing parallel data loading without enabling constraints and then
triggering parallel PK constraint verification. PostgreSQL is unable to independently
parallelize constraint verification. Thus, the Post approach for PostgreSQL performs
parallel data loading (using PCOPY) and single-threaded constraint verification.

Figure 16 shows the total time taken to load the database using 16 physical cores.
Comparing Figures 15 and 16, the following observations can be made:

5 https://www.monetdb.org/Documentation/SQLreference/TableIdentityColumn
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– Parallel loading reduces the execution time of both Unified and Post approaches for
both DBMS (4.08⇥ under PCOPY, 2.64⇥ under DBMS-A).

– The conventional rule of thumb is no longer applicable to both DBMS shown in
Figure 16: While Post provides a 2.14⇥ reduction in loading time over Unified under
DBMS-A, the trend reverses under PostgreSQL as Unified outperforms Post by 19%.
The reason is that the Post configuration for PostgreSQL performs single-threaded
constraint verification while Unified parallelizes loading and constraint verification
together as a unit.

– Despite outperforming Post, Unified is still 1.45⇥ slower than the No-Constraints
case for PostgreSQL. Similarly, Post is 1.34⇥ slower than No-Constraints for DBMS-
A. The PostgreSQL slowdown is due to a cross interaction between write-ahead
logging and parallel index creation; Figure 17 shows the execution time of No-
Constraints and Unified over PostgreSQL when logging is enabled/disabled. DBMS-
A lacks support for an explicit logging deactivation, therefore it is not presented.
Logging has minimal impact in the absence of constraints, but it plays a major role
in increasing execution time for Unified. In the presence of a PK constraint, Post-
greSQL builds an index on the corresponding attribute. As multiple threads load
data into the database, the index is updated in parallel, and these updates are logged.
Profiling revealed that this causes severe contention in the log manager as multiple
threads compete on latches.

Foreign key constraints. Figure 18 shows the time taken to load the TPC-H dataset
in the single-threaded case when both PK and FK constraints are enabled. Comparing
Figures 15 and 18, it is clear that FK constraints have a substantially larger impact
on loading time compared to PK constraints. Unified is 7.8⇥ and 6.1⇥ slower under
PostgreSQL and DBMS-A when the systems perform FK checks as well, compared to
1.38⇥ and 2.1⇥ when they only perform PK checks.
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Figure 19 shows the time it takes to enforce FK constraints in parallel. Unlike the
PK case, each approach tested benefits differently from additional parallelism. While
the Unified approach benefits from a 4⇥ reduction in loading compared to the single-
threaded case for PostgreSQL, it fails to benefit at all for DBMS-A. However, the Post
approach benefits from parallelism under both systems; DBMS-A and PostgreSQL achieve
a 3.45⇥ and 1.82⇥ reduction in loading time respectively. In addition, similarly to the
PK case, disabling logging has significant impact on loading time: Unified (No Log) is
1.73⇥ faster than the logging approach.

The conventional rule of enforcing constraints after data has been loaded is again
only applicable under specific scenarios: Under DBMS-A, Post is indeed the only ap-
proach to scale and thus, the rule of thumb holds. Under PostgreSQL, Post lags behind
Unified (NoLog) by 1.12⇥.

In total, adding constraint verification to the loading process increases time by
1.43⇥ under DBMS-A and 5.1⇥ under PostgreSQL for the parallel case. We profiled
PostgreSQL with logging disabled to identify the root cause of performance drop; latch-
ing was the reason. PostgreSQL implements foreign keys as triggers, therefore each
record insertion into a table fires a trigger which performs a select query on the foreign
table to verify that the insertion does not violate the FK constraint. Such selections ac-
quire a Key-Share lock on the target record to preserve consistency. As multiple threads
load data into the database, they compete over the latch (spin lock) that must be acquired
as a part of Key-Share locking. This contention causes performance deterioration.

Reducing contention. One way to reduce contention is to modify the DBMS by
implementing more scalable locks. An alternative that this study adopts is to avoid con-
tention by re-organizing the input. Specifically, we partition the raw data of the “child”
table so that any records having an FK relationship with the same “parent” record are
grouped together within a partition. Therefore, two threads loading two different parti-
tions will never contend over latches while acquiring Key-Share locks.

Figure 20 shows the speedup achieved when loading the TPC-H lineitem table using
the Unified approach over partitioned input data, compared to the case when the input
is not partitioned. In the partitioning case, we split lineitem in N chunks, one per thread,
such that two records in different partitions will never refer to the same parent record in
the supplier table. In cases of low contention (1-4 threads), speedup is marginal. When
multiple threads are used to load the input data, the input partitioning strategy yields up
to a 1.68⇥ reduction in loading time.

Summary The traditional rules of thumb for loading data with constraints have to be
updated. This section showed that enforcing constraints during loading (i.e., the Unified



approach) offers performance which is competitive to applying constraints after loading
the data (the Post approach), and even outperforms it in almost all cases. Besides the
performance benefits, the Unified approach enables a DBMS to be kept online while
loading data, compared to the Post approach which requires the DBMS to be taken
offline. Thus, administrators should be wary of these trade offs to optimize bulk loading.

In addition, it is time to refactor the loading pipeline in traditional DBMS. The
loading pipeline is typically implemented over the same code base that handles single-
record insertions and updates, therefore parallelizing loading externally using several
client threads results in latch contention in several DBMS subsystems like the lock
and log managers. Instead, DBMS should make bulk loading a first-class citizen and
develop a code path customized for loading. With such changes, the loading time can
be substantially reduced further even in the presence of constraints, all while the DBMS
remains online during data loading.

4 Related Work

As the growth of collected information has turned data loading into a bottleneck for data
analysis tasks, researchers from industry and academia have proposed ideas to improve
the data loading performance and in some cases to enable data processing without any
requirement for data loading. This section briefly reviews this body of related work.

Bulk loading. Numerous approaches examine ways to accelerate data loading. Start-
ing from general-purpose approaches, the authors of [10] introduce the idea of partition-
ing the input data and exploiting parallelism to load the data partitions faster. Instant
loading [24] presents a scalable bulk loader for main-memory systems, designed to par-
allelize the loading phase of HyPer [22] by utilizing vectorization primitives to load
CSV datasets as they arrive from the network. It applies task- and data- parallelization
on every stage of the data loading phase to fully leverage the performance of modern
multi-core CPUs and reduce the time required for parsing and conversion. Disk-based
database systems can also benefit from such vectorized algorithms to reduce the CPU
processing cost. Sridhar et al. [26] present the load/extract implementation of dbX, a
high performance shared-nothing database system that can be deployed on commodity
hardware systems and the cloud. To optimize the loading performance the authors apply
a number of techniques: (i) asynchronous parallel I/O (aio) for read and write opera-
tions, (ii) forcing every new load to begin at a page boundary and using private buffers
to create database pages to eliminate lock costs, (iii) using a minimal WAL log, and (iv)
forcing worker threads to check constraints on column values.

Other related works offer specialized, domain-specific solutions: The authors of [9,
28] consider the problem of bulk loading an object-oriented DBMS, and focus on issues
such as inter-object dependencies. Bulk loading for specialized indexing structures is
also an active research area [14, 25]. Finally, the authors of [12] put together a parallel
bulk loading pipeline for a specific repository of astronomical data.

Querying external data. Motivated by the blocking nature of data loading, vendor
lock-in concerns, and the proliferation of different data formats, numerous works advo-
cate launching queries directly over raw data. Multiple DBMS allow SQL queries over
data files without loading them a priori. Such approaches, such as the External tables of
Oracle and the CSV Engine of MySQL, tightly integrate data file accesses with query



execution. The integration happens by “linking” a data file with a given schema and by
utilizing a scan operator with the ability to access data files and create the internal struc-
tures (e.g., tuples) required from the query engine. Still, external tables lack support for
advanced database features such as DML operations, indexes or statistics.

Speculative loading [13] proposes an adaptive loading mechanism to load data into
the database when there are available system resources (e.g., disk I/O throughput).
Speculative loading proposes a new database physical operator (SCANRAW) that pig-
gybacks on external tables. Adaptive loading [15] was presented as an alternative to full
a priori loading. The main idea is that any data loading operations happen adaptively and
incrementally during query processing and driven by the actual query needs. NoDB [8]
adopts this idea and extends it by introducing novel data structures to index data files,
hence making raw files first-class citizens in the DBMS and tightly integrating adaptive
loads, caching, and indexing. RAW and Proteus [19–21] further reduce raw data access
costs by generating custom data access paths at runtime via code generation.

Data vaults [17] aim at a symbiosis between loaded data and data stored in exter-
nal repositories. Data vaults are developed in the context of MonetDB and focus on
providing DBMS functionality over scientific file formats, emphasizing on array-based
data. The concept of just-in-time access to data of interest is further extended in [18]
to efficiently handle semantic chunks: large collections of data files that share common
characteristics and are co-located by exploiting metadata that describe the actual data
(e.g., timestamps in the file names).

5 Conclusion

Data loading is an upfront investment that DBMS have to undertake in order to be able
to support efficient query execution. Given the amount of data gathered by applica-
tions today, it is important to minimize the overhead of data loading to prevent it from
becoming a bottleneck in the data analytics pipeline.

This study evaluates the data loading performance of four popular DBMS along
several dimensions with the goal of understanding the role that various software and
hardware dimensions play in reducing the data loading time of several application work-
loads. Our analysis shows that data loading can be parallelized effecively, even in the
presence of constraints, to achieve a 10⇥ reduction in loading time without changing
the DBMS source code. However, in order to achieve such improvement, administrators
need to be cognizant of the fact that conventional wisdom that applies to single-threaded
data loading might no longer hold in for parallel loading under some circumstances.

Despite such improvement, we still find that most of the systems are not able to
fully utilize the available CPU resources or saturate available storage bandwidth. This
suggests there is still room for improving the data loading pipeline. Our analysis re-
veals that moving forward, DBMS designers should refactor the data loading pipeline
by using a dedicated code base for bulk loading to avoid latch contention in various
subsystems. While some systems (like DBMS-A) do use such techniques when the da-
tabase can be taken offline, we believe that it is necessary to apply the same principles
to load data while keeping the database online in order to eliminate DBMS down time.
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